PROSTHAPHAERESIS ${ }^{\mathbf{1}}$

\square

The forerunner of the logarithm

$$
\sin a \bullet \sin c=\frac{1}{2}\left\{\sin \left(\left(90^{\circ}-a\right)+c\right)-\sin \left(\left(90^{\circ}-c\right)-a\right)\right\}
$$

(for $\mathrm{a}+\mathrm{c}<90^{\circ}$)

by
 Klaus Kuehn and Jerry McCarthy

Nienstaedt (D) and Wokingham (UK)

[^0]
Abstract

For most of his life Johannes Werner (1468-1522) was a priest and astronomer living in Nuremberg, Germany. He first published the prosthaphaeretic formulae (the term "prosthaphaeretic" coming from the Greek for addition and subtraction) around 1513 in a manuscript; this information is mainly supported by very intensive research carried out by Axel Anthon Björnbo (1874-1911) [Björnbo].

It is not exactly known if Werner was aware at that time of the advantageous use of the prosthaphaeretic formula for calculations with very large numbers; however, this can be assumed as being the case.

Moreover, strong evidence shows that neither the astronomer Tycho Brahe (1546-1601) nor his student Paul Wittich (1555?-1587) invented the prosthaphaeretic formula. However, Tycho Brahe was among the first, who - from 1580 to 1601 - took intensive advantage of the prosthaphaeretic formula for his astronomical calculations.

This paper reviews the historical background for the formulation and "re-invention" of prosthaphaeresis.

On the basis of the relevant literature it gives some practical examples as well as the mathematical-geometrical proof of the formula.

Introduction

For a long time, people have looked for ways to simplify computing procedures. It was not so important how difficult the calculations might have been; the goal was always to reduce the cost of computation, but without losing any accuracy.

Particularly in the field of astronomy, in which mathematics first developed, where computations with large numbers were (and still are) a necessity, the solutions were very expensive in time and effort. This particularly concerned the basic operations of arithmetic such as multiplication, so if it would be possible to simplify such operations, for example by reducing multiplication to addition, then that would be an ideal solution.

The most well-known example of this methodology would be logarithms, which were publicised in 1614 in Edinburgh by John Napier (1550-1617) in the first table of logarithms (Mirifici Logarithmorum Canonis Descriptio).

But what happened before then? How did astronomers do their calculations without knowledge of the logarithms?

The answer is that for about hundred years they used Prosthaphaeresis, ((also written as Prosthaphärese, Prostaphärese or Prostaphairesis)

Literature on the subject of Prosthaphaeresis frequently mentions an incorrect name as its inventor; usually the discovery is attributed to the astronomer Tycho Brahe or to his pupil Paul Wittich, or sometimes even to Christopher Clavius. However, Brian Borchers gave a short overview of Prosthaphaeresis and its history in his article in the Journal of the Oughtred Society (JOS) [Borchers], and in that article he referred to its originator as being Johannes Werner.

Borchers' article stands as the starting point for this article, in which the background to the Prosthaphaeretic formula, and to Prosthaphaeresis itself, will be clarified from historical and mathematical viewpoints.

The term "Prosthaphaeresis" - meaning a system in which one uses addition and subtraction also has other usages in astronomy; thus one speaks, for example, of prosthaphaeresis in connection with: aequinoctiorum; eccentrititatis; latitudinis; nodi pro eclipsius; orbis; tychonis; nodorum - "an orbiting body does not move itself evenly; it moves more slowly if the Sun is in the proximity of the body; faster, if the Sun moves away from it. " [Bialas]. However, these purely astronomical usages of the term "prosthaphaeresis" will not be considered further in this essay.

Johannes Werner (1468-1522) can be seen to be the discoverer of Prosthaphaeresis, and substantial support for this can be found in a work by Axel Anthon Björnbo [Björnbo]. As a pupil of the science historian Anton von Braunmühl, Björnbo took up von Braunmühl's references to some inconsistencies and went to Rome in 1901, so that he could read and study appropriate ancient material in the Vatican library.

Of particular interest, he found an undated manuscript, with the title: '"I. Joannis Verneri Norimbergensis "de triangulis sphaericis"' in four books, and also ' "II. Joannis Verneri Norimbergensis "de meteoroscopiis" ' in six books.

Queen Christina of Sweden had been in possession of this manuscript, probably between 1654 and 1689; this document had been previously owned by Jakob Christmann (15541613).

After Queen Christina's death in 1689, this manuscript (Codex Reginensis latinus 1259, i.e. Regina Sveciae Collection, item 1259) lay mainly un-noticed in the Vatican.

During further investigations it became clear that Werner was the editor and/or an author of the two handwritten parts, but that he did not physically write them himself.

As to the actual writer of the document, Björnbo identified a mathematically-inexperienced professional scribe of the time.[Björnbo; Pages 140, 141, 171].

The text of the first complete part of the manuscript (de triangulis sphaericis) can be found in Björnbo's work [Björnbo; Chapter 1] on pages 1-133. Later on Björnbo voices his opinions concerning this manuscript both in the "publisher remarks" [Björnbo; Chapter 3] and also in "text history" [Björnbo; Chapter 4] in a very detailed research report.

However, the extensive contents of that manuscript will not be dealt with further in this essay.

It should be mentioned however, that as an innovation for its time, the organisation/arrangement of the books concerning spherical triangles is to be seen [Björnbo; Chapter 1 and page 163]:

1. An explanation of the different possible triangle forms (book I) a. A discussion concerning the spherical triangle

2. Solutions of the right-angled triangle (book II)
a. The spherical-trigonometric basic formulae
b. The solution of the right-angled spherical triangle

3. Solutions of the non-right-angled (obtuse) triangle (book III and IV) a. The solution of the obtuse triangle by decomposition into rightangled triangles (III)
 b. The solution of the obtuse spherical triangle by a prosthaphaeretically transformed Cosine rule (IV)

The three categories stated are of the same structure as the contents of the Opus Palatinum of Rheticus of 1596, in so far as spherical triangles were concerned.

In chapter 5 [Björnbo; starting from page 177] is summarised the structure of the contents of the individual books in a tabular form.

Thus the findings of Björnbo, namely, the assumptions of Anton von Braunmühl [von Braunmühl 1897] which confirm the authority of the prosthaphaeretic formula, along with recent up-to-date work by David A. King [King] and Victor E. Thoren [Thoren] together constitute the foundation for the remainder of this article.

Historical

The history of Prosthaphaeresis is summarised in the time table in the appendix, and is derived from several literary sources [Björnbo; von Braunmühl].

Here now it is necessary to briefly describe the details of Johannes Werner's life, along with the steps in time of the development of Prosthaphaeresis, including its "rediscovery" and its sequence of publication.

Johannes Werner was born on 14 February 1468 in Nuremberg and died in (May?) 1522 in Nuremberg while he was in the post of parish priest in the municipality of St. Johannes.

In his spare time he worked as a mathematician, astronomer, astrologer, geographer and cartographer.

Figure 5-1 Johannes Werner
"Werner was very much interested in Astrology and created horoscopes for numerous wellknown Nuremburg residents, including Erasmus Topler (1462-1512), Provost of St. Sebald, Willibald Pirckheimer (1470-1530), Christoph Scheurl II (1481-1542) and Sebald Schreyer (1446-1520). However, Werner gained harsh criticism from these activities. Lorenz Beheim (around 1457-1521), a choirmaster in Bamberg, wrote about him thus: "He always makes a big thing of his secrets, which however result in little honour for him. Mostly, if he wants to predict the truth, he invents it. "
"Werner became friendly with Johannes Stabius (approximately 1460-1522). In co-operation with him, he developed numerous important works. Werner suggested the construction of a sun-dial, designed to show "Nuremberg time", which essentially meant that the clock should indicate the hours passed since sunrise. Stabius supplied a design, which Sebastian Sperantius (? - 1525) drew on the east choir of the Lorenzkirche in 1502.

Stabius also pushed Werner to publish his manuscripts. In November 1514, the compilation under the management of Conrad Heinfogel (? - 1517) left the printing press. Amongst other things therein, a certain form of the map projection is presented, which is known to historians as the Stabius-Werner Projection. In 1522 there appeared a second compilation (Fig. 5-2), which contained his work, "On the Motion of the Eighth Sphere" or "De motu octavae Sphaerae". He studied the precession of the stars from the geocentric point of view; however, for this he was fiercely criticised by Copernicus
(1473-1543)."
This and other information, particularly also concerning Werner's meteorological activities, can be found on the Internet under [Nuremberg] and [Wikipedia Werner].

A first compilation was published in 1514 under the title: "In hoc opere haec continentur: Nova translatio primi libri geographiae Cl. Ptolemaei, quae quidem translatio verbum habet e verbo fideliter expressum Ioanne Vernero Nurembergensi interprete......", containing work by him and by other authors.

Figure 5-2 Compilation of 1522 [according to Mehl - from the library in Lisbon]

Björnbo draws this conclusion from the similarity of the contents of the manuscript with the contents of the compilations. On the one hand it concerned thereby the amazing similarity and/or sameness of the solution of a triangle using orthogonal projection. Therein Werner had "already written in a pure form the prosthaphaeretic method and its application for the practical transformation of the Cosine Rule, i.e. the second main rule of spherical Trigonometry*."
*

$$
\cos B=\frac{\cos b-\cos a \cos c}{\sin a \sin c}
$$

Further he says [Björnbo; Page 155]: "In the compilation of the year 1522 there appears in Werner's book "De motu octavae Sphaerae".... in the triangle (star ${ }^{2}$; pole of the ecliptic; north pole) the height of the Star (λ) by its width (β), its dedination (δ) and its inclination to

[^1]the ecliptic (ε), i.e. that the angle of a skew spherical triangle is numerically determined by its three given sides...."

The fact that the emergence of Prosthaphaeresis must have taken place after 1505 Björnbo takes from one of the available quotations in the translation of Euclid's work by Zamberti (Bartholomäo Zamberto Veneto) which became available only after 1505.

After it was clear that the manuscript Cod. Reg. 1259 had its origin in these two works by Johannes Werner, the search was on, after Werner's death, to find out the development and the whereabouts of this Cod. Reg. 1259.

Up to the death of Werner in the year 1522 the two works had still not been printed, or at least, no appropriate references or copies have been found from that time.

The contents of Book I - Joannis Verneri "Norimbergensis de triangulis sphaericis" in four books, as well as Book II - Joannis Verneri "Norimbergensis de meteoroscopiis" in six books, were however well known to Werner's contemporaries, including Johann Wilhelm von Loubemberg and his colleague Peter Apian.

The bibliographer Konrad Gesner (1516-1576) describes in 1555 that the Nuremberg mathematician and mechanic George Hartmann (1489-1564) saved the two works of Werner from destruction. According to Doppelmayr, Hartmann probably handed over these and other works from Werner's estate in 1542 in Nuremberg to George Joachim Rheticus (1514-1576; who lived from 1554 in Kraków as a practicing physician).
G. Eneström [Eneström] determined that both works of Johannes Werner were published by Rheticus in the year 1557 in Kraków.

However this publication contained, apart from the title page, only the ten-page introduction (The Prooemium) by Rheticus and nothing else which Werner wrote.

The title page contains clear references to the titles of the two books mentioned above.

Figure 5-3 The Title page of the Kraków publication.

Björnbo sees as an explanation for the absence of the text, the fact that Rheticus, and after his death his pupil Valentinus Otho (approx. 1550-1605), had incorporated both the arrangement (a systematic presentation of different triangle forms) and the contents of the "De triangulis sphaericis", in the great book of tables Opus Palatinum (which was published in 1596) and they had perfected the philosophies of Johannes Werner, whom they both admired and respected.

However Rheticus did not himself support the solution of spherical triangles either by Ptolemaios' method or by Geber's method (which was developed by Peuerbach, Regiomontanus and Werner).

So, he developed his own method independently; this method derived from the geometry of pyramids, using common points at the centre of the sphere; this latter methodology is derived from Copernicus [Björnbo, page 163 foot-note 2].

Rheticus was the only pupil of Copernicus and by his publication of the famous "De revolutionibus orbium coelestium Libri VI" had himself taken up the cause of providing a reliable sine table.

Thus Björnbo assumes the manuscript Cod Reg 1259 lying in the Vatican was in the Rheticus' possession and represented a copy of the original, and that it should serve as a beginning point.

This printed manuscript - which contained no drawings - fell into the hands of his pupil Valentinus Otho after the death of Rheticus in 1576.

From this bequest the manuscript went to the Heidelberger professor Jakob Christmann (1554-1613 \{Björnbo P. 165 incorrectly describes the date of death as 1630\}), who quoted from the two works of Werner in his book "Theoria lunae"(1611), and even indicated that he possessed the two books.

In his dissertation of 1924, Erwin Christmann (a later successor of Jakob Christmann) wrote the following [Christmann]:

- "The "Theoria lunae" plays a remarkable role in the history of trigonometry, as it gave in an appendix, information concerning the inventor of the prosthaphaeretic method.

Until the discovery of Werner's two documents, "de triangulis sphaericis" and "de meteoroscopiis" by A. Björnbo in 1902 in the Vatican library in Rome, the "Theoria lunae" was one of the few sources to bring clarity over this long disputed question.

For von Braunmühl in 1899 in his "Lectures on the History of Trigonometry", Christmann's writing is the most outstanding support for his proof of the invention of the prosthaphaeretic method by Johannes Werner.

Christmann explained here, that the manuscript of that work was well-known to him, -although it is not known whether it was the original manuscript, later lost, or the printed copy from the Vatican library, which was available to him -. Werner developed and in figures described therein the Prosthaphaeresis. He defended this against Tycho Brahe, who with his pupil Wittich, were generally regarded as being the inventors. Christmann is probably referring to a transcript, which would be good as a basis on which to work; his words therefore do not suggest a deliberate deception.

- "Even today these relationships are not as clear as could be desired. It is feasible to recognise Werner as the inventor of the method and as the person who saw the opportunities for its possible use; however, in reality he is more the re-discoverer of the prosthaphaeretic formulae, as they were already well known to Arabic mathematicians. On the other hand, one must be objective and the trustworthy mathematical and astronomical circle of Count Wilhelm of Hessen above all ascribe to Wittich and Tycho Brahe the exclusive merit of the general introduction of the use of the prosthaphaeretic formulae in calculation. The meaning of their activity must be recognised all the more, in that the holy-of-holies inventors of logarithms and of their practical use had not become available. Furthermore, that this was not a collection of formulae by Wittich and Tycho Brahe can be proven by comparative research.
- In addition to the information given in the "theoria lunae" Christmann brings a full development of the method and key phrases from the triangle theory, so far as it required.
He had already summarised these into his works "observationum solarium libri tres, in quibus explicatur versus motus Solis in sodiaca et universa doctrina triangulorum ad rationes apparentius coelestium accomodatur Basel 1601". In another work called "nodus Cordinis ex doctrina sinum explicatus 1612" he taught the solution of geometrical problems with the help of sines, instead of using algebraic methods.
- Although today, by the rediscovery of Werner's trigonometrical work, the "theoria lunae" with its data has receded into the background, nevertheless its existence remains historically notable, particularly because its statements were, as a result of recent investigations, accepted as correct and also because together with the two writings from the years 1601 and 1612 written by a professor from Heidelberg interested in trigonometry, it puts down a clear testimony."

Anton von Braunmühl based his remarks for the development of the Prosthaphaeresis particularly on the statements of Jakob Christmann. He sees the origin of these formulae as being with Ibn Yunus, an Arab mathematician who died in 1009. However, according to David A. King [King], on the basis of new knowledge which he acquired while working on his thesis, this idea is no longer valid.

What role does Tycho Brahe (1546-1601), the Danish astronomer, play in connection with Prosthaphaeresis, which he himself began to use in 1580 ?

According to [von Braunmühl 1899] "Tycho Brahe knew the source, in which Werner, using his trigonometrical books, applies the prosthaphaeretic method in order to find the elevation of Spica Virginis, because he often speaks of Werner's writing "De motu octavae Sphaerae" and he (Tycho) particularly drew upon this observation of Spica. However the wording of that source could make it attentive only on the existence of a more practical calculation procedure, than the usual one is, the procedure itself was absolutely not to be taken out of that source."

It is possible that Brahe had direct access to Johannes Werner's manuscript, or it can surely be assumed that the manuscript's contents were known to him. [Björnbo, Page 168 ff] There are several ways in which this might have happened; see also [Thoren]:

1. During Brahe's visits to Wittenberg in the years 1566 or $1568-1569$ or 1575 , he may have seen Johannes Werner's books about triangles.
2. Paul Wittich and Brahe could have developed their own prosthaphaeretic method in 1580.
3. Reimarus Ursus (Nicolai Reimers; 1551-1600) - during a visit to the island Hven, where Brahe worked in 1584, may have stolen the prosthaphaeretic formula, and was thereafter considered as an intimate enemy of Brahe. In Ursus` Fundamentum Astronomicum (Strasbourg 1588) Johannes Werner's prosthaphaeretic formula is published for the first time.
4. Jost Bürgi, who was in contact with Wittich, may have played a role and may have received the formula from Bürgi in Kassel - according to [Thoren] and [Lutstorf], Bürgi may then have provided the geometrical proofs.
5. Johann Richter (also known as Praetorius) (1537-1616) saw the book concerning spheres in 1569 written by Rheticus (he writes about it in 1599) and was from 1571-1576 a Professor of Mathematics in Wittenberg. According to a letter which Brahe wrote in 1588 to Hayck, he had not met Praetorius in 1575.
6. The role of Paul Wittich - to whom Brahe in 1592 (5 years after Wittich's death) ascribed the discovery of the Prosthaphaeresis. This is also proposed by [Thoren], who differentiates between the prosthaphaeretic formula itself, and actual computations with that formula.

Possibly it was a mixture of the above points, which led to the fact that Tycho Brahe became acquainted with Prosthaphaeresis and then further developed it with Paul Wittich and learned how to use it. Anton von Braunmühl [von Braunmühl; Part 1, page 193] speaks therefore also of a "re-invention" of Prosthaphaeresis by Brahe in the year 1580. Also Kepler (wann ??? nicht ermittelbar) refers to Prosthaphaeresis on one occasion as "Artificium Tychonicum", then again as "Negotium Wittichianum" and finally as "Regula Wittichiana" [von Braunmühl 1899].

The historical journey of the manuscript and of the formulae are graphically summarised in the appendix.

Now, the significance of Regiomontanus (Johannes Mueller, born in 1436 in Königsberg near Hassfurt - died in 1476 in Rome) concerning the work of Johannes Werner, will be considered. Björnbo [Björnbo, page 172ff] explains the fact that Werner gained access to Regiomontanus' works, among other things the 5 "unfinished and mutilated" triangle books quite late - in fact, as late as 1504. Werner was not happy about this, and perhaps for this reason makes no reference in his own work to Regiomontanus, and does not cite the latter's work. Perhaps in addition, because he was very familiar with the works of Euclid, Menelaus, Geber, Ptolemaios and von Peurbachs as used by Regiomontanus, he did not want to repeat Regiomontanus' work. However similarities can be seen in the ideas and in some of the expressions found in Regiomontanus' work and in Werner's work.

There frequently occur in connection with the history of Prosthaphaeresis names of some very well-known and of some less well-known scholars, who cannot be dealt with in great detail here, but who should not be completely ignored. Their roles and work in connection with Prosthaphaeresis are probably worth a completely separate investigation, but their names and some details are given here:

In the first place Jost Bürgi (1552-1632)

- Peter Apian (1495-1552)
- Erasmus Reinhold (1511-1553)
- Bartholomäus Scultetus / Schulz (1532-1614)
- Christoph Clavius (1537-1602); (1538-1612, is also mentioned as the inventor of the Prosthaphaeresis [Symposium 2005]) - he is not, however.
- Nicolaus Reimers /Reimarus Ursus (1551-1600)
- Paul Wittich (1555-1587)
- Melchior Jöstel (1559-1611) and his handwritten treatise "Logistica Prosthaphaeresis Astronomica" which can be found in the library of the Austrian National Library, Vienna (Cod. palat. 10686-27) [von Braunmühl 1899] as well as in the Dresden Landesbibliothek [Folkerts].
- Christian Severin Longomontan (1562-1647)
and finally Ibn Yunus (around 1000).
Apart from the first and last, the above names are chronologically ordered according their years of birth.

Much introductory information and references to these above people can be found in [von Braunmühl 1900], [Lutstorf] and [Thoren] and also in [Gingerich 1988] and [Gingerich 2005].

Mathematical

To remind the reader, Prosthaphaeresis provides a methodology by the means of which the process of multiplication can be converted into an addition or a subtraction by the use of trigonometric formulae. This technique provided a substantial easing of work for the astronomers of the time.

Looking at books of formulae or on the Internet [Mathworld 11 and 12] it becomes clear that there are many ways of expressing the Prosthaphaeresis formulae. These formulae, which we know as the "prosthaphaeretic formulae" or as the "prosthaphaeresis formulae", are also known as the "Werner Formulae" or as the "Werner Formulas" (Fig. 6-1).

Geometry $>$ Trigonometry $>$ Trigonometric Identities
Werner Formulas

The Werner formulas are the trigonometric product formulas

$2 \sin \alpha \cos \beta$	$=$	$\sin (\alpha-\beta)+\sin (\alpha+\beta)$
$2 \cos \alpha \cos \beta$	$=$	$\cos (\alpha-\beta)+\cos (\alpha+\beta)$
$2 \cos \alpha \sin \beta$	$=$	$\sin (\alpha+\beta)-\sin (\alpha-\beta)$
$2 \sin \alpha \sin \beta$	$=$	$\cos (\alpha-\beta)-\cos (\alpha+\beta)$.

This form of trigonometric functions can be obtained in Mathematica using the command TrigReduce[expr].

SEE ALSO: Prosthaphaeresis Formulas. [Pages Linking Here]

LAST MODIFIED: February 17, 2006
CITE THIS AS:
Weisstein, Eric W. "Werner Formulas." From MathWorld--A Wolfram Web Resource.
http://mathworid.wolfram.com/WernerFormulas.html

1999 CRC Press LLC, © 1999-2007 Woifram Research, Inc. I Terms of Use

Figure 6-1 The Werner Formulae

The URL on the above website leads to the Prosthaphaeresis Formulae as shown below in Fig. 6-2 and which are known as "Simpson's Formulae" or "Simpson's Formulas". However these formulae differ in their representation and in their ease of use.

Geometry > Trigonometry > Trigonometric Identities

Prosthaphaeresis Formulas

The Prosthaphaeresis formulas, also known as Simpson's formulas, are trigonometry formulas that convert a product of functions into a sum or difference. They are given by

$$
\begin{array}{ll}
\sin \alpha+\sin \beta & =2 \sin \left[\frac{1}{2}(\alpha+\beta)\right] \cos \left[\frac{1}{2}(\alpha-\beta)\right] \\
\sin \alpha-\sin \beta & =2 \cos \left[\frac{1}{2}(\alpha+\beta)\right] \sin \left[\frac{1}{2}(\alpha-\beta)\right] \\
\cos \alpha+\cos \beta & 2 \cos \left[\frac{1}{2}(\alpha+\beta)\right] \cos \left[\frac{1}{2}(\alpha-\beta)\right] \\
\cos \alpha-\cos \beta & =-2 \sin \left[\frac{1}{2}(\alpha+\beta)\right] \sin \left[\frac{1}{2}(\alpha-\beta)\right] \tag{4}
\end{array}
$$

This form of trigonometric functions can be obtained in Mathematica using the command TrigFactor [expr].

Figure 6-2 Prosthaphaeresis Formulae from Mathworld.

(In German linguistic usage [von Braunmühl 1900] these formulae shown in Fig. 6-1 are known as "Die prosthaphäretischen Formeln".)

In more modern collections of formulae these names are not used, but instead the formulae are referred to as "products of trigonometric functions" [Bartsch] - see Fig. 6-3.

Products of frigonometric functions

$$
\begin{aligned}
& \sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
& \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] \\
& \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\
& \cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]
\end{aligned}
$$

Figure 6-3 The Prosthaphaeretic formulae as "products of trigonometric functions".

Applications

As a first application, a way to do multiplication is shown with the help of Formula 1:

$$
A \bullet B=\sin a \bullet \cos b=1 / 2[\sin (a+b)+\sin (a-b)] \quad \text { (Formula 1) }
$$

with the factors $A=0.61566$ and $B=0.93969$ [Enzykl, page 70]. From the table in Fig 7-1 we read for factor A an angle of $a=38^{\circ}$ in the sine column (green), and for B an angle of b $=20^{\circ}$ from the cosine column (red) (see red ellipses).

Figure 7-1 four-digit table from [Enzykl, page 805]

It is also possible to do division is this manner. Replacing cos b by ($1 / \mathrm{sec} \mathrm{b}$) and thereby getting another angle for b, it can be further calculated with the right side of the formula 1.

As the connoisseur can imagine, it is also possible to reverse this process to, for example, calculate an addition by using a multiplication. This method is very geeky, but might be of theoretical interest to a slide rule user!

George Ludwig FROBENIUS ${ }^{3}$ (25.8.1566 in Iphofen - 21.7.1645 in Hamburg) was a Polyhistor (Universal scholar), a mathematician, a bookseller and a Hamburg publisher.

He lived in a time of change in computing methods as used in astronomical applications.
These circumstances were shown in his Clavis Universi Trigonometrica [Frobenius] in which arithmetical examples of the known methods of calculation were presented.

```
CLAVIS UNIVERSI
    TRIGONOMETRICA:
PER QVAM COELI AC TERRAE
Adyta recludi, \& omnes de Motibus ac Dimenfionibus utriufque
per hypothefes artificum Trianoulari forma conceptix que-
ftionesper certa Problemata refolvi \& in apertumproduci poffunt,
    Triplici,quà fieri potelt,methodo: quarum
PRIMA Vulgaris eft per Sinus, Tangentes,autSecantes, ex ufitata multipli-
            cationeac divifione Terminorum proportionalium conftans:
ALTERA Profthapheretica Compendiofa, qua termi. proport, ex pro-
    blematum prafcripto dati,fi non fuerintSinus,modd in Secantes,modò
    in Sinus convertuntur, ac per hos quaxfita juxta feptemRegulas proftha-
    pharecticas inveftigantur:
TERTIA merèLogarithmica, enq̆ue Compendiofifima, quax per L. OGA-
    Ritum os tùm Sinu. Tangent. \& Secant. tulm vulgarium numerorum
    Coffice fibi invicem adhibitos, Calculum facilimex exfequitur,
    Accedunt Tabulepvonegocioloc triponico fingulio paginis biferiams
                ita dijpinifla. wr
```



```
    LOGARITHMI, ad Qwadrantic gradus or horwn Scrap. prima;
WFER TO RE verì nwmeri Valgaresab shirhuse adisgoto natwrall fric adfeen-
    dentes, fingslosghbos concomurantes LOG AR IT HMM exhibeamtur:
            AD SERENISS. PRINCIPEM
AUGUSTUM JUNIOREM DUCEM
            BRUNSWICENS, ET LUNEBURGENSEM
                    Adornatafuer hec omniaffudio of opora
        GEORGII LUDEVIOLFROBENII
                    Iphovienfis Franci,nunc civis Hamburgenfis,
```



```
            EXBIBLIOPOLTO FRQTBENIANO.
```


Figure 7-2 2nd title page Frobenius

Frobenius used three methods, which he named

- "Prima ($\left.1^{\text {st }}\right)$ " or "Vulgaris",
- "Altera ($\left.2^{\text {nd }}\right)$ " or "Prosthaphaeretice"
- "Tertia $\left(3^{\text {rd }}\right)$ " or "Logarithmice".

In the following examples, the three different methods are demonstrated and described to demonstrate the computation of an elevation, which results from the cutting across two diameters (great circles around a sphere). The two diameters are taken from astronomy (spherical trigonometry) and represent the equator and the diameter of the Earth in line with the ecliptic.

[^2]```
 TRIGONOMETRIA SPHERICORUM:
 4 3
 TRIGONOMETRIE
 PRACTICE,
 SECTIO ALTERA.
PROBLEMATA XXVI TRIANGULORUM
 Spharricorumanalyfin fpectantia continens.
 PRIMUM PROBLEMA.
 TRIANGUILI Sphxricirectanguli data, prxter rectum,Bafe
cum Angulo adBafin obliquo, CR USS dato angulo fubtenfum in-
venire,Modis fex, & horum fingulostrifariam abfolvere, Vnlgariter
Profthapheretice'o Logarithmice.
Ut Sinus totuseff adSinum Bafis: Ita
Sinus anguli datiad Sinum Cruris oppofiti.
```



```
 E XEMPLUM: Dantur inprafontriTriang.
#Ba Spharicorellamg. preter ReI/mmad B, ba/is
avearcm Erligtizey0.gr. s.pr.ss.foc.d' Alsuhus
,3 obliquifatis Eclptice boceve23.grylyor.
lofoc: Quaritar Crus \beta%.
 Vulgariter.
 Vulgarite
```





```
 Arowmmjer se.gr.spr.ss.for.Compl/s.gr.st.pr.s.fola.
```



```
 1gyrg.83. 22. 35.Sim.g.033.253.
 Difor.j6. 29. 3s.Sins.02g,539futs.
 Diffr. 4,009,414
```




Figure 7-3 Example pages from Frobenius for the computation of a side in a spherical triangle

In the spherical triangle $\mathbf{a} \boldsymbol{\beta} \mathbf{y}$, the angle a opposite the side $\boldsymbol{\beta} \boldsymbol{\gamma}$ is to be computed.
Two angles and the side opposite the other angle ( $\boldsymbol{B}$ ) are given.
The characteristic (and simplification) is that this concerns a right-angled spherical triangle; the right angle $\left(90^{\circ}\right)$ is at the angle $\boldsymbol{B}$.

For the computation of the side $\boldsymbol{\beta} \boldsymbol{Y}$, the sine rule is applicable; within a right-angled spherical triangle this is expressed as:

## Sine rule: $\boldsymbol{\operatorname { s i n }} \mathrm{a}=\boldsymbol{\operatorname { s i n }} \mathrm{a} \bullet \boldsymbol{\operatorname { s i n }} \mathrm{y} / \boldsymbol{\operatorname { s i n }} \beta$

The angle $\mathbf{a}$ has a value of 23 degrees, 31 minutes and 30 seconds - and corresponds thereby to the angle of the ecliptic. The side $\mathbf{y a}$ has a value of 30 degrees, 8 minutes and 55 Seconds. Because
$\sin 90^{\circ}=1$, the formula simplifies to:

$$
\sin a=\sin a \bullet \sin y a
$$

Following the first "Vulgariter" method, there results the calculation process represented in table 7-1:

## Table 7-1 Calculation method using multiplication of sines

| 1. Vulgariter | Angle/Side $\begin{gathered} \alpha \\ v^{\alpha}=b \end{gathered}$ <br> $\beta$ | Trig Funct | $\begin{gathered} \text { Degree } \\ 23 \\ 30 \\ 90 \end{gathered}$ | $\begin{gathered} \mathrm{Pr} \\ 31 \\ 8 \end{gathered}$ | $\begin{gathered} \text { Sec } \\ 30 \\ 55 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Si $\alpha$ | 3.991 .492 |  |  |  |  |
|  |  | times |  |  |  |  |
|  | Si yo | $5.022 .446$ <br> divided by |  |  |  |  |
|  | S.t. (sinus totus $=\beta$ ) | $\begin{aligned} & 10.000 .000 \\ & \text { equals } \end{aligned}$ |  |  |  |  |
|  | Quartus $=$ si $\alpha \times$ si $y \alpha$ | 2.004.705 |  |  |  |  |
| Solution: | Sinus: arcus ejus |  | 11 | 33 | 52 | Crus $\beta$ Y |

According to this method the seven-place sines of the angles were determined and multiplied with one another.

The resultant solution for the side $\mathbf{B Y}=\mathbf{a}$ : 11 degrees, 33 minutes 52 seconds.
The 2nd method is "Prosthaphaeretic", which works according to the following formula:

$$
\sin \gamma a \bullet \sin \alpha=\frac{1}{2}\left\{\sin \left(\left(90^{\circ}-\gamma a\right)+\alpha\right)-\sin \left(\left(90^{\circ}-\alpha\right)-\gamma a\right)\right\}
$$

Table 7-2 Calculation method using Prosthaphaeresis


In table 7-2 the calculation method is shown, in which the result is calculated using prosthaphaeretic formula. To remind the reader: the product to be computed (sin ya times $\sin \mathbf{a})$ can be computed by the Addition and Subtraction of Sines. Only at the conclusion there is an additional, simple, division (Semis) by 2 . We see here a somewhat elaborate calculation process like the above Vulgariter method; however simpler calculation steps are used.

The simplest and fastest way for the computation of the height is the logarithmic method shown in table 7-3. In addition it was necessary, to look up the logarithms associated with the sines and add and/or subtract these. The use of suitable tables was trusted by astronomers of that time, because there already existed appropriate tables for the trigonometric functions and for their logarithms.

Table 7-3 Calculation method using Logarithms

| 3. Logarithmice | Angle/Side <br> $\alpha$ | Degree $23$ | $\begin{aligned} & \mathrm{Pr} \\ & 31 \end{aligned}$ | $\mathrm{Sec}$ |  | $\begin{gathered} \text { Log } \sin \varangle \\ 9,601,136 \end{gathered}$ |  | Log Sinus | Degree | Pr | Sec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | y $\alpha$ | 30 | 8 | 55 | plus | 9,700,915 |  |  |  |  |  |
|  |  |  |  |  |  | 19,302,051 |  |  |  |  |  |
|  | $\beta$ | 90 |  |  | minus | 10,000,000 |  |  |  |  |  |
| Solution: |  |  |  |  |  | 9,302,051 | Crus ßy | 9,302,051 | 11 | 33 | 52 |

Frobenius had included a detailed table (see Fig. 7-4) in his comprehensive Clavis Universi Trigonometrica ( 323 pages text book plus 184 pages of tables); in this table, sines as well as tangents and secants, and their logarithms, for each minute of angle are exactly set down. Additionally, the Briggs logarithms of the numbers are tabulated.


Figure 7-4: Excerpt from a table by [Frobenius] showing 23 degrees and 31 minutes.

Frobenius leaves it open to the reader as to which computation method might be used. However, given that very extensive and very detailed six and/or seven digit tables for both trigonometric functions and for logarithms were available, there was a preference to use logarithms as the latter were better known.


George Ludwig Frobenius (1566-1645)
Link http://de.wikipedia.org/wiki/Georg Ludwig Frobenius

Since the 17th Century, proportional calculating instruments, such as the sector and the proportional divider/circle developed by Jost Bürgi [Staudacher], make wide-spread appearances.

Nicholas Rose [Rose] has described further applications of Prosthaphaeresis. In one such, he applies Prosthaphaeresis to music, to explain the theory of vibrations and beats; in another, he explains why it is not possible to receive high-fidelity reproduction using a signal from a medium-wave transmitter.

The prosthaphaeretic method was used for about hundred years with great eagerness, because it represented a considerable aid to computation. Moreover, to judge from the works of Longomontan and Frobenius [Frobenius], several mathematicians continued to use their trusted Prosthaphaeresis even after the publication of the logarithms.

Others however concerned themselves with the logarithms and valued their use very highly: The astronomer and mathematician Marquis Pierre-Simon de Laplace (1749-1827) claims that
"The invention of the logarithms shortens calculations which might have lasted for months, to a few days, doubling thereby the life of the (human) computers. "

Moreover, the application of Prosthaphaeresis had been able to contribute for some decades and it may have been the trigger for the emergence of logarithms, because John Napier (1550-1617) and Jost Bürgi (1552-1632), the first calculators and publishers of logarithms, were trusting users of Prosthaphaeresis. Bürgi used Prosthaphaeresis for his computations concerning his observations of Mars around 1590 [Faustmann]. According to Volker Bialas [Bialas] Johannes Kepler (1571-1630) also used Prosthaphaeresis for his calculations for his "Epitome Astronomiae Copernicanae" (Outline of Copernican Astronomy - 1618/1621).

## Bibliography

| Bartsch | Bartsch, Hans -Jochen; Liebscher, Herbert: Handbook of Mathematical Formulae; New York, London: Academic press, 1974 (translation of the 9th edition of "Mathematische Formeln" by Herbert Liebscher, Leipzig) |
| :---: | :---: |
| Bialas | Bialas, Volker: Die Rudolphinischen Tafeln von Johannes Kepler; Nova Kepleriana, Bayerische Akademie der Wissenschaften, Neue Folge, Heft <br> 139; Munich: Verlag der Bayerischen Akademie der Wissenschaften, 1969 |
| Björnbo | Björnbo, Axel Anthon (Hrsg.): Ioannis Verneri: De Triangulis Sphaericis, Libri Quatuor; De Meteoroscopiis, Libri Sex; cum Prooemio Georgii Ioachimi Rhetici; In Abhandlungen zur Geschichte der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, begründet von Moritz Cantor. XXIV. Heft ; Band I De Triangulis Sphaericis; Leipzig: B.G. Teubner, 1907 |
| Borchers | Borchers, Brian: Prosthaphaeresis; Journal of the Oughtred Society VOL 14 No. 2 (2005) P. 3 |
| Christmann | Christmann, Erwin: Studien zur Geschichte der Mathematik und des mathematischen Unterrichts in Heidelberg : von der Gründung der Universität bis zur combinatorischen Schule. - 1924. - 164 S. <br> Univ. Heidelberg, Diss., 1924 page 79-85 <br> http://katalog.ub.uni-heidelberg.de/titel/66462861 |
| Eneström | Eneström, G.: Über eine wiedergefundene Handschrift Bibliotheca Mathematica, number 3, 1902 P. 242-243 |
| Enzykl | Kleine Enzyklopädie Mathematik; <br> Leipzig: VEB Bibliographic Institut, 1965 P. 70 |
| Folkerts | Folkerts, Menso; private correspondence - \#C 82 |
| Faustmann | Faustmann, Gerlinde; private correspondence. |
| Frobenius | Frobenius, Georg Ludwig: Clavis Universi Trigonometrica: per quam coeli ac terrae adyta recludi, Hamburg 1634 |
| Gingerich 1988 | Gingerich, Owen; Westman, Robert S.: The Wittich Connection: Conflict and Priority in Late Sixteenth Century Cosmology; Transactions of the American Philosophical Society VOL 78, part 7, 1988 P. 69 |
| Gingerich 2005 | Gingerich, Owen: The Book Nobody Read; London: Arrow Books, 2005 |
| King | King, David A.: Ibn Yunus' very useful tables for reckoning time by the sun; Archives for History of Exact Sciences VOL 10, 1973 (P. 342-394) |
| Lutstorf | Lutstorf, Heinz und Walter, Max: Jost Bürgi's Progress Tabulen; Schriftenreihe der ETH-Bibliothek, Nr. 28 Zürich 1992 |
| Mathworld 11 | Werner Formulae on the Internet; Weisstein, Eric W. as at 25.8.2016 at http://mathworld.wolfram.com/WernerFormulas.html |
| Mathworld 12 | Prostaphaeresis Formulae on the Internet; as at 25.8.2016 at http://mathworld.wolfram.com/ProsthaphaeresisFormulas.html |
| Mehl | Johannes Werner in the Internet; as at 25.8.2016 at http://serge.mehl.free.fr/chrono/werner.html |
| $\begin{aligned} & \text { Nuremberg } \\ & 2009 \end{aligned}$ | Johannes Werner on the Internet; as at 25.8.2016 at http://www.astronomie-nuernberg.de/personen/show.asp@ID=66 with URLs to general German biography and Zedler's Universallexikon |
| Rose | Rose, Nicholas J.: Prostaphaeresis on the Internet; as at 25/8/2016 at http://www4.ncsu.edu/~njrose/pdfFiles/Prostha.pdf |
| Staudacher | Jost Bürgi, Kepler und der Kaiser - Uhrmacher, Instrumentenbauer, Astronom, Mathematiker; Verlag Neue Zürcher Zeitung 3. Auflage 2015 |
| $\begin{aligned} & \text { Symposium } \\ & 2005 \end{aligned}$ | Proceedings of the Symposium on Christoph Clavius (1538-1612) University Of Notre Dame 2005 (see article by Paul A. Schweitzer, Rio de Janeiro, Page 6) |


| Thoren | Thoren, Victor E.: Prosthaphaeresis Revisited; <br> Historia Mathematica, 15:32-39(1988) |
| :--- | :--- |
| von <br> Braunmühl <br> 1897 | von Braunmü̈l, Anton: Beiträge zur Geschichte der Trigonometrie, Nova <br> Acta, Abh. der Kaiserl. Leop.-Carol. Deutschen Akademie der Naturforscher <br> Band LXI, Nr. . : Halle: : 897 S. 26 |
| von <br> Braunmühl <br> 1899 | von Braunmühl, Anton: Zur Geschichte der prosthaphäretischen Methode in <br> der Trigonometrie; Abhandlungen zur Geschichte der Mathematik, Heft 9 <br> Seite 17-29 (Cantor-Festschrift), Leipzig 1899 |
| von <br> Braunmühl <br> 1900 | von Braunmühl, Anton: Vorlesungen über Geschichte der Trigonometrie; <br> Teil I und II; Leipzig, 1900 (Sändig Reprint Verlag: 2002) |
| Wikipedia <br> Prostha | Prosthaphaeresis on the Internet in Wikipedia; As at 25/8/2016 at <br> http://en.wikipedia.org/wiki/Prosthaphaeresis |
| Wikipedia <br> Werner | Prosthaphaeresis on the Internet in Wikipedia; as at 25/8/2016 at <br> http://de.wikipedia.org/wiki/Johannes Werner and <br> http://en.wikipedia.org/wiki/Johannes Werner |
| Würschmidt | Würschmidt, Joseph (Hrsg.) unter Benutzung der Vorarbeiten von Dr. A. <br> Bjönbo: Ioannis Verneri: De Triangulis Sphaericis, Libri Quatuor; De <br> Meteoroscopiis, Libri Sex; cum Prooemio Georgii Ioachimi Rhetici; Volume <br> Band II De Meteoroscopiis; Leipzig: B.G. Teubner, 1913 |
|  |  |

## Table of contents

Abstract ..... 1
Introduction ..... 2
Historical ..... 4
Mathematical ..... 12
Applications ..... 14
Bibliography ..... 20


[^0]:    ${ }^{1}$ This is a shortened version of a paper published in 2012: see www.oughtred.org/jos/articles/PROSTHAPHAERESISandWERNERfinal.jmccLR8.8.pdf

[^1]:    ${ }^{2}$ The triangle is determined by the three corners: star; pole of the ecliptic; north pole
    PROSTHAPHAERESIS - the forerunner of the logarithm

[^2]:    ${ }^{3}$ G.L. Frobenius is not the originator of the "Satz des Frobenius", who is Ferdinand Georg Frobenius, Mathematician (1849-1917)

    PROSTHAPHAERESIS - the forerunner of the logarithm

